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Operational applications for human identification require high

credibility in order to determine or verify a person’s identity to a

desired confidence level. Multimodal biometric score fusion (MBSF)

can significantly improve detection, recognition, and identification

performance of humans. The goals of this research are to explore

the impact of each factor in a MBSF process and to determine

the most important (key) factor. The following are three main fac-

tors that will be investigated and discussed in this paper: score

modality, recognition method, and fusion process. Specifically, score

modality is defined as imaging device (hardware) for biometric data

acquisition. Recognition method is defined as matching algorithm

(software) for biometric score calculation. A fusion process such as

arithmetic fusion, classifier-based fusion, or density-based fusion,

is used to combine biometric scores. The hidden Markov model

(HMM) is also applied to the MBSF process as a baseline com-

parison. The accuracy of human identification is measured with a

verification rate. A new metric, relative rate increase (RRI), is pro-

posed to evaluate the performance improvement using score fusion.

Several recognition methods (two to four matchers) and four fusion

processes (mean, linear discriminant analysis, k-nearest neighbors,

and HMM) are compared over four multimodal databases in our

experiments. The experimental results show that the score modality

is the dominant factor in biometric score fusion. The fusion process

becomes more important in a single modality fusion. Adding more

recognition methods into the fusion process has the least impact on

fusion improvement.
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1 INTRODUCTION

Data fusion can be performed at different levels,

e.g., pixel, feature, score, and decision. Accordingly, the

corresponding data preprocessing is also different for

each level. For example, pixel-level and feature-level

image fusion usually require registration and normal-

ization (to align multiple images); while score-level fu-

sion only requires normalization. Decision-level fusion

such as a majority voting probably has the least require-

ments for preprocessing as the results are compiled from

scores. The scope of fusion discussed in this paper is

focused on multimodal biometric score fusion (MBSF).

The source scores may originate from different types of

devices, called modality (e.g., fingerprints, face images),

and/or from variant analysis software, called matcher or

recognition (e.g., linear discriminant analysis algorithm,

Elastic Bunch Graphing Method (EBGM) algorithm)

for face recognition. Score-level fusion usually involves

score normalization, score fusion, and decision fusion.

Score normalization (refer to Section 2.1) and decision

fusion (refer to Section 3.2.2) may have some effects on

the results of score fusion; however, the impacts of score

modality (related with hardware), recognition method

(software), and fusion process (post-processing in a hy-

brid human identification system) will be emphasized

and investigated in this paper.

There are several types of score fusion methods:

arithmetic combination of fusion scores, classifier-based

fusion, and density-based fusion. In arithmetic fusion,

the final score is a value of predefined function, f, with

the input of normalized scores, (s1,s2, : : :). The output

of such a fusion process, SF, is computed by

SF = f(s1,s2, : : : ,sn), (1)

where f stands for a fusion function or a set of fusion

rules. f may be implemented by a simple arithmetic

operation [15] such as taking the summation, average,

product, minimum, maximum, median, majority vote, or

by exploiting a Naive Bayes model [16]. In classifier-

based fusion (referred to as classifier fusion), a classi-

fier is first trained with the labeled score data, and then

tested with unlabeled scores [4], [9]. The choices of

classifiers include linear discriminant analysis (LDA)

[8], k-nearest neighbors (KNN), artificial neural net-

work (ANN) [14], and/or a support vector machine

(SVM) [6]. In density-based fusion, a multi-dimensional

density function is estimated with the score dataset, and

then it can predict the probability of any given score

vector [23], [28]. Nandakumar et al. [21] proposed a

density-based fusion method where the likelihood ra-

tio was estimated by Gaussian mixture model (GMM).

Their experimental results [21] showed that the likeli-

hood ratio fusion outperformed any single matcher and

other fusion processes (like sum rule with min-max).

A Hidden Markov model (HMM) was recently proposed

for MBSF (referred to as HMM fusion [31]), which can
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flexibly combine multiple scores from different modal-

ities and/or from variant matchers. The early experi-

mental results [31] showed that the HMM fusion was

the most accurate and credible method in comparison

to mean fusion and KNN fusion.

The security applications of a human identification

system require achieving greater accuracy, efficiency,

and credibility to robustly determine a person’s iden-

tity (ID). It is clear that the MBSF process can signifi-

cantly improve human identification performance [13],

[21], [26], [27], [30], [31]. The set of literature fo-

cused on the advances of specific score fusion methods

and its performance improvement typically evaluate the

complete system. For example, Toh et al. [27] intro-

duced a reduced multivariate polynomial model for mul-

timodal biometric decision fusion (using three scores

from fingerprint, speech and hand geometry), and they

found that local learning and global decision did bet-

ter than just fusing all three results at once. Ross and

Jain [26] conducted a set of experiments in combining

multimodal biometric scores (from face, fingerprint, and

hand geometry), and their results indicated that the sum

rule performed better than the decision tree and linear

discriminant classifiers. Our early work [31] also fo-

cused on the discussion of performance improvement

with the HMM fusion method. To the authors’ knowl-

edge, there are few published works that explore the

key parameters that influence score fusion. Part of the

reason may be lack of multimodal score databases and

no effective metrics for fusion improvement evaluations

across different methods and databases. Recognizing the

key factor of score fusion will help design an accurate

and credible human ID system to meet the critical needs

of security applications. For instance, assuming that a

human ID system permits a fusion with only two scores,

should two modalities (one matcher per modality, e.g.,

fingerprint and face), or two matchers on one modality

(e.g., fingerprint) be used? What is the impact of var-

ious fusion processes (e.g., HMM versus KNN) over

different scenarios?

The main purpose of this research is to discover

the key factor of multimodal biometric score fusion.

Four fusion methods, mean, LDA, KNN, and HMM, are

tested and compared using four biometric score datasets,

wherein the HMM fusion is specifically configured for

score fusion. Additionally, a new metric (called rela-

tive rate increase) is introduced for fusion improvement

measurement. Our experiments reveal that score modal-

ity is the key factor in a score fusion scenario, which

is meaningful to integrate and configure a multimodal

biometric system. The rest of this paper is arranged as

follows. The score normalization and fusion evaluation

are depicted in Section 2. The score fusion processes in-

cluding HMM fusion are described in Section 3. Exper-

imental results, comparisons, and discussions are pre-

sented in Section 4. Finally, conclusions are drawn in

Section 5.

2 SCORE NORMALIZATION AND FUSION
EVALUATION

Multimodal biometric scores are computed with dif-

ferent modalities and algorithms, which may be similar-

ity values (e.g., confidence values, probabilities, or loga-

rithm probabilities), or distance measures (e.g., Euclid-

ian distance, Hamming distance, or Mahalanobis dis-

tance). The variant source scores may contrast in a va-

riety of ranges. Score normalization is required before

score fusion. Meanwhile, fusion evaluation is needed to

compare the performance of different fusion processes.

To evaluate fusion performance, it is required that all

original scores are either similarity scores or distance

scores (but not the mix of similarity and distance). Con-

verting a similarity score to a distance score is straight-

forward because of their reciprocal relationship.

2.1 Score Normalization

Prior to score fusion, score normalization is expected

since the multimodal scores are heterogeneous and thus

have varying dynamic ranges. The large variances of

multimodal scores are caused either by different match-

ing algorithms or by different natures of biometrical

data. There are many normalization methods proposed

in literature. Jain et al. [13] reported that min-max, z-

score, and tanh normalization techniques, followed by

a simple sum of scores fusion method, resulted in a

superior GAR (genuine accept rate). It was also shown

that both min-max and z-score methods are sensitive to

outliers; whereas the tanh normalization method is both

robust and efficient. The score data used in our experi-

ments were obtained in the controlled lab environment

(with less noise), thus a standard z-score normalization

procedure is applied to all biometric scores,

SN = (S0¡¹0)=¾0, (2)

where SN is the normalized score vector, S0 is the

original score vector, and ¹0 and ¾0 denote the mean
and standard deviation of original scores, respectively.

2.2 Fusion Evaluation

2.2.1 Verification Rate.
Genuine score is the matching score resulting from

two samples of one user; while impostor score is the

matching score of two samples originating from differ-

ent users. Genuine accept rate (GAR) is the fraction of

genuine scores exceeding the threshold; whereas false

accept rate (FAR) is the fraction of impostor scores ex-

ceeding the threshold. A receiver operating character-

istic (ROC) curve is computed from the FAR and true

positive rate (TPR). On an open dataset (the query user

may not be contained in the database), GAR/FAR/ROC

area can be computed by choosing a threshold. On a

closed dataset (the query user is surely included in the

database), the identification performance can be mea-

sured by a verification rate (also called identification
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rate or recognition rate), denoted as RV, the percentage

of correctly identified users over the total number of

users. In our experiments, verification rate (VR) is used

to evaluate the fusion performance since all users (i.e.,

subjects) are guaranteed in the database. Of course, the

VR value may vary with a preset threshold. In a single-

matcher evaluation, top-1 matching (e.g., the shortest

distance) is used, while in a score fusion evaluation, the

default threshold of each classifier is used. Finally, keep

in mind that it is necessary to convert all multimodal

scores to either similarity scores or distance scores be-

fore score fusion.

2.2.2 Relative Rate Increase.
The performance improvement using score fusion

cannot be properly measured by using the absolute dif-

ference of two verification rates. For example, improv-

ing RV from 80% to 90% seems to be more difficult than

the improvement from 98% to 99%. Generally speak-

ing, we know that the improvement of RV via score fu-

sion becomes more and more difficult when the original

rate is approaching 100%. We propose to use a relative

rate increase (denoted as RRI) to evaluate the fusion

improvement.

RRI =
ARI

1¡RV
=
RF¡RV
1¡RV

, (3)

where RF is the verification rate via score fusion; RV is

the mean of original verification rates from individual

modalities or matchers. ARI = RF¡RV is the absolute
rate increase (ARI), which may not precisely measure

the performance improvement as stated above. RRI 2
(0,1]; the higher, the better. According to the RRI

definition, two fusion improvements, from 80% to 90%

and from 98% to 99%, are equivalent, and their RRI =

0:50. It may be understood that the two improvements

are “equivalent” in the sense of their difficulty levels

and/or of the extent of their effort.

Many metrics could be devised, wherein the RRI

metric seeks to measure the actual improvement against

the total amount of possible improvement. With future

large databases, the RRI metric would help in the quality

of the fusion performance over the entire dataset (versus

an assumed recognition performance with a small data

set).

3 SCORE FUSION PROCESSES

In this section, arithmetic fusion and classifier fu-

sion are briefly reviewed, and then HMM models are

introduced for biometric score fusion.

3.1 Arithmetic Fusion and Classifier Fusion

Arithmetic fusion means to combine multiple scores

by taking the summation, average (mean), product

(called geometric mean), minimum, maximum, and me-

dian [15]. Majority vote is actually a kind of decision-

level fusion, which requires the number of decision

makers to be an odd number to avoid a possible tie.

The mean fusion is selected in our experiments because

it has the best performance of all aforementioned arith-

metic fusion processes.

In classifier fusion, four frequently-used classifica-

tion methods are discussed. These methods include lin-

ear discriminant analysis (LDA), k-nearest neighbor

(KNN), artificial neural network (ANN), and support

vector machine (SVM). The fusion results of LDA and

KNN methods will be presented in our experiments

due to their better performance on average [33], and

thus these two methods are briefly described as follows,

where the reader can find descriptions of ANN and

SVM in the literature. The purpose of LDA is to predict

group membership based on a linear combination of a

set of predictor variables (i.e., a feature vector) [8]. The

end result of the LDA procedure is a model (i.e., linear

discriminant function, LDF) that allows prediction of

group membership when only the predictor variables

are known. The KNN method is usually deployed with

a clustering technique. Fuzzy C-means (FCM) [3] is a

data clustering technique wherein each data point be-

longs to a cluster to some degree that is specified by

a membership grade. FCM starts with an initial guess

of data membership and iteratively moves the cluster

centers to the correct location within a data set. Once

a certain number of clusters are formed by the FCM

algorithm, the k-nearest neighbors can be found from

those clusters using a Euclidean distance (between a

testing feature vector and the clustered feature vectors).

The probability of a given feature vector (multimodality

scores) can be calculated with the labeled clusters.

To sufficiently use the sample data in classification

evaluation, a cross validation method is applied to split

original data into two groups for training and testing

purposes. K-fold cross validation [25] is ideal for small

databases. Notice that the divisions of k subsets (k = 10

used in our experiments) are based upon the users. If

one user is grouped into Subset 1, then all scores of that

user (including all his/her genuine and impostor scores)

belong to Subset 1.

3.2 Hidden Markov Model for Multimodal Score
Fusion

3.2.1 Basics on Hidden Markov Models.
In the past two decades, HMMmodels have emerged

as a powerful tool for modeling stochastic processes

and pattern sequences. Originally, HMMs have been ap-

plied to the domain of speech recognition and have be-

come the dominating technology [24]. In recent years,

they have attracted growing interest in computational

molecular biology, bioinformatics, mine detection [12],

handwritten character/word recognition [19], face and

gesture recognition, shape recognition, image database

retrieval, and other computer vision applications [5].

Generally speaking, an HMM is a model of a stochastic

process that produces a sequence of random observa-
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tion vectors at discrete times according to an underlying

Markov chain. At each observation time, the Markov

chain may be in one of N states fs1, : : : ,sNg (hidden
from the observation) and, given that the chain is in a

certain state, there are probabilities of moving to other

states, called the transition probabilities. An HMM is

characterized by three sets of probability density func-

tions: the state transition probabilities (A), the observa-

tion symbol probabilities (B), and the initial state proba-

bilities (¼).
Let T be the length of the observation sequence (i.e.,

number of time steps; t= 1, : : : ,T), O= fO1, : : : ,OTg be
the observation sequence, and Q= fq1, : : : ,qTg be the
state sequence. The compact notation,

¸= (A,B,¼) (4)

is generally used to indicate the complete parameter

set of the HMM model, ¸. In the above, A= faijg
is the state transition probability matrix, where aij =

P(qt = sj j qt¡1 = si) for i,j = 1, : : : ,N; ¼ = f¼ig, where
¼i = P(q1 = si), are the initial state probabilities. In

the case of the discrete HMM, the observation vec-

tors are commonly quantized into a finite set of sym-

bols, fv1, : : : ,vMg called the codebook. Each state is
represented by a discrete probability density function

and each symbol has a probability of occurring given

that the system is in a given state. The observation

symbol probability distribution B= fbi(Ot)g becomes
a simple set of fixed probabilities for each class, i.e.,

bi(Ot) = bi(k) = P(vk j qt = si), where vk is the symbol
of the nearest codebook of Ot.

Three key problems [24] must be solved for the

model defined in Eq. (4) to be useful in real world

applications: the classification (testing) problem, the

problem of finding an optimal state sequence (tuning),

and the problem of estimating the model parameters

(training). The classification problem involves comput-

ing the probability of an observation sequence O=

fO1, : : : ,OTg given a model ¸, i.e., P(O j ¸). The Viterbi
algorithm [20] is an efficient and formal technique for

finding this maximum (optimal) state sequence and as-

sociate probability. The third problem is the training

problem, i.e., how does one estimate the parameters of

the model? First, all the states themselves must be esti-

mated. Then the model parameters need to be estimated.

In the discrete HMM, the codebook is first determined,

usually using clustering techniques such as K-means [7]

or fuzzy C-mean clustering algorithms [3]. The proba-

bility distribution B may be estimated either by fuzzy

memberships [3] in a discrete HMMmodel, or by Gaus-

sian mixture model (GMM) [10], [21] in a continuous

HMM model. Then the parameters (A,B,¼) are esti-
mated iteratively using the Baum-Welch algorithm [2].

3.2.2 HMMs for Multimodal Score Fusion.
The HMM fusion is a type of classifier fusion, but

it significantly differs in data preparation and classifi-

cation process. In the context of this paper, we need

to distinguish two terms, multimodal scores and multi-

matcher scores. Multimodal biometric scores (also re-

ferred to as inter-modality scores) result from different

modalities (such as different hardware devices for imag-

ing face and fingerprint); while multi-matcher scores

(also referred to as intra-modality scores) result from

different software algorithms but use the same modality

(e.g., three face scores generated from three face recog-

nition algorithms, respectively).

For HMM training, a large database with known

users (labeled with user IDs) are expected, and thus a

k-fold cross validation is utilized to satisfy this need.

All scores are normalized and then organized as the in-

puts of HMM models using k-fold cross validation. The

HMM model is adapted to a MBSF process and ini-

tialized with parameters like HMM(m,n,g), or denoted

as m£ n£ g HMM. Where m is the number of intra-

modality scores (from m matchers upon one modality

data) representing an observation vector in HMM, and n

is the number of modalities corresponding to n hidden

states, respectively. By placing n pieces of m-dimension

observation vectors together, an observation sequence

(over time, t) is formed. g is the number Gaussian com-

ponents per state in a Gaussian mixture model (GMM).

The GMM is applied to estimate the state probability

density functions of each hidden state in a continuous

HMM model.

Two HMM models are derived using genuine scores

and impostor scores (in the training dataset), respec-

tively. Given an observation sequence formed with mul-

tiple scores (of dimension m£ n) in the testing dataset,
the two trained HMM models can compute the proba-

bilities of being a genuine user and an impostor user,

respectively. The user is identified as genuine if the

probability given by the genuine HMM is higher. The

details of the HMM model [31] and its adaption to a

MBSF process are described as follows.

3.2.3 HMM Adaption to Multimodal Score Fusion.
The HMM models have wide applications in dif-

ferent fields and require proper data initialization for

a specific application. In HMM score fusion, the ob-

servation vector Ot can be the m-dimensional intra-

modality scores from m matchers. The observation se-

quence O(t,s) can be formed by combining n pieces

of Ot from n modalities: O(t,s) = fSmng. For example,
there are 2 biometric modalities (n= 2; e.g., face, fin-

ger) and 2 matching algorithms (matchers) for each

modality (m= 2). Thus, the length of O(t,s) is 4 (re-

fer to NIST-Face-Fingerer database in Table 1a). The

elements of B can be initialized with GMM, where the

number of Gaussian models (g) in each state are usu-

ally fixed (e.g., g = 3) or automatically decided [10].

Notice that two HMM models, ¸Gen and ¸Imp, are actu-

ally trained using genuine scores and impostor scores,

respectively; where their parameters can be estimated
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TABLE 1a

Summary of four multimodal biometric databases.

Database No. of Modalities No. of Matchers No. of Users No. of Images No. of Scores

NIST-Face-Finger 2: Finger & Face 4 517 3,102 1,069,156

NIST-Finger-Finger 1: Finger 2 6,000 24,000 72,000,000

NIST-Face 1: Face 2 3,000 6,000 36,000,000

ASUMS-Face-Face 2: Face (IR & DC) 6 96 576 110,592

TABLE 1b

Details of the trimmed databases (Sim. = Similarity; Dist. = Distance).

Database Genuine : Impostor HMM Models Matchers Score Type Plot

NIST-Face-Finger M1 (Face) 1,034 : 2,068 2£ 1£ 3 2 Face matchers Sim., Sim. Fig. 2a

NIST-Face-Finger M2 (Finger) 1,034 : 2,068 2£ 1£ 3 Left, Right Finger Sim., Sim. Fig. 2b

NIST-Finger-Finger 12,000 : 24,000 2£ 1£ 3 Left, Right Finger Sim., Sim. Fig. 2c

NIST-Face 6,000 : 12,000 2£ 1£ 5 2 Face matchers Sim., Sim. Fig. 2d

ASUMS-Face-Face M1 (IR) 576 : 1,152 3£ 1£ 2 FPB, LDA, EBGM Dist., Dist., Sim. Fig. 3a

ASUMS-Face-Face M2 (DC) 576 : 1,152 3£ 1£ 2 FPB, LDA, EBGM Dist., Dist., Sim. Fig. 3b

Fig. 1. Sample faces from the ASUMS-Face-Face database: Notice

that the two images (DC/visible, IR/thermal) shown at two

neighboring columns were acquired from the same subject. The

images are the aligned faces (320£ 320 pixels).

using the Baum-Welch algorithm [2]. An unlabeled bio-

metric score sequence, O, will be classified as a “gen-
uine user” if PGen(O j ¸Gen)> PImp(O j ¸Imp)+ ´ (a sim-
ple decision rule); otherwise, O will be an “impostor

user,” where ´ is a small positive number empirically

decided by experiments.

O=

½
Genuine User if PGen(O j ¸Gen)> PImp(O j ¸Imp)+ ´
Impostor User Otherwise

(5)

In general, m¸ 1, n¸ 1, and m£ n¸ 2 are expected.
In other words, at least two scores are required for

HMM fusion. If the number of biometric modality is

one (n= 1), then the number of matching scores from

that modality must be two or greater (produced from

different matching algorithms, e.g., LDA and EBGM

[29] for face recognition). If there are two or more

modalities (n¸ 2), in order to properly initialize and
train the HMM models, the numbers of intra-modality

scores (m¸ 1) derived from each modality must be

same. There are usually more impostor scores than

genuine scores in a biometric score dataset. To prevent

a HMM model from being biased by the excessive

impostor scores, the number of impostor scores used

in training ¸Imp should be equivalent to the number of

genuine scores used in training ¸Gen.

4 EXPERIMENTAL RESULTS AND DISCUSSIONS

The MBSF experiments were conducted on four bio-

metric score databases and evaluated by reporting the

verification rates (RV and RF) and the values of rel-

ative rate increase (RRI). Four fusion processes were

selected to be reported in our experiments because of

their better performance on average. The four fusion

processes include one arithmetic fusion (mean fusion),

two classifier fusions (LDA fusion and KNN fusion),

and HMM fusion [31]. In the context, “modality” repre-

sents a biometric device (fingerprint, face); “matcher” is

the software implementation of a “recognition method”;

and “fusion method” means how to combine multiple

scores (e.g., KNN fusion, HMM fusion). In the follow-

ing discussion, Row 1 (or Column 1) referring to a table

means the 1st row (or column) after the header row (or

column).

4.1 Multimodal Scores and Experimental Design

Four biometric score databases (see Table 1a) were

used in our experiments; three of which were from

NIST-BSSR1 (Biometric Scores Set Release 1, from

National Institute of Standards and Technology) [22],

[31], and one of which was the face scores generated

in our lab. Specifically, as shown in Table 1a, the NIST-

Face-Finger database consists of a total of 1,069,156

biometric scores that were computed with 3,102 images

from 517 users (individuals). Two face images, two

left index fingerprints (images), and two right index

fingerprints were acquired from each user; and then two

face matching systems and one fingerprint matching

system were applied to those images, respectively. So
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TABLE 2a

The verification rates (%) of four fusion processes (RF) across four databases.

Database Single Matcher (RV) Mean Fusion LDA Fusion KNN Fusion HMM Fusion

(m,n,g)

NIST-Face 77.50, 81.02 81.88 92.28 96.82 97.01 (2,1,5)

NIST-Finger-Finger 80.52, 87.88 93.98 97.60 92.29 98.16 (2,1,3)

NIST-Face-Finger 89.17, 84.33 86.46, 92.65 99.61 99.10 99.55 99.68 (2,2,5)

ASUMS-Face-Face 91.67, 93.75, 96.88 90.63, 93.75, 97.92 100.00 99.48 98.48 99.83 (3,2,2)

TABLE 2b

The relative rate increase (RRI) of four fusion processes across four databases. RV is the averaged RV of all matchers.

Database RV Mean Fusion LDA Fusion KNN Fusion HMM Fusion (¹RRI,¾RRI)

NIST-Face 79.26 0.1263 0.6278 0.8467 0.8558 0.6142, 0.3419

NIST-Finger-Finger 84.20 0.6190 0.8481 0.5120 0.8835 0.7157, 0.1794

NIST-Face-Finger 88.15 0.9671 0.9240 0.9620 0.9730 0.9565, 0.0221

ASUMS-Face-Face 94.10 1.0000 0.9119 0.7424 0.9712 0.9064, 0.1153

(¹RRI,¾RRI) (NA) 0.6781, 0.4062 0.8279, 0.1375 0.7658, 0.1915 0.9209, 0.0602 (NA)

there are 4 genuine scores for each user, two scores

from two face matching systems, two scores from one

fingerprint system but running on two fingerprints (left

and right). There are two modalities (finger and face)

and a total of four matchers in the NIST-Face-Finger

database, and thus two 2£ 2£ 5 HMM models [31]

(for genuine and impostor, respectively) were initialized

(g = 5 gave the best performance when varying g from

2 to 71). The NIST-Finger-Finger database contains the

scores from one fingerprint system running on two

fingerprints (left and right); and then two 2£ 1£ 3
HMMmodels were established. The NIST-Face database

is comprised of the scores from two face matching

systems; and two 2£ 1£ 5 HMM models were created.

The ASUMS-Face-Face (Alcorn State University

[ASU] MultiSpectral) database (Row 4 in Table 1a) in-

cludes the scores from three face recognition algorithms

and from two modalities ASUIR (ASU long-wave In-

frared) face images and ASUDC (ASU Digital Cam-

era) face images (see Fig. 1). Three face recognition

algorithms are linear discriminant analysis (LDA) [18],

elastic bunch graph matching (EBGM) [29], and face

pattern byte (FPB) [32]. The corresponding HMMmod-

els were configured as 3£ 2£ g (refer to Table 2a). The
ASUIR-Face subset [32] includes thermal (long-wave in-

frared, IR) face images, whereas the ASUDC-Face sub-

set consists of visible (digital camera, DC) face images

from the same group of users. In these two sub-datasets,

3 face images were acquired from each user, where one

randomly-selected image was used as probe face (i.e.,

a face image from a live camera) and the other two as

gallery faces (i.e., face images from a database). Table

1b shows the comparative relations over the trimmed

datasets (of reduced impostor scores) between num-

bers of genuine to impostor scores, parameters of HMM

1g was determined empirically in the experiment from which the dif-

ferences of g had a marginal impact on the results.

models (m£ n£ g), matchers, score type, and plots (also
refer to Tables 2a, 3a, 4a).

The total number of scores is massive in that it

mainly contains impostor scores. For example, ASUMS-

Face-Face consists of 1,152 genuine scores and 109,440

impostor scores (for all 3 matchers and 2 modalities).

All scores are normalized by using Eq. (2). An unbal-

anced training with the excessive impostor scores may

result a biased or over-trained model. To avoid possible

bias in model training as mentioned in Section 3, two

impostor scores per matcher per user were randomly se-

lected for training. All genuine scores plus reduced im-

postor scores are called “trimmed database.” Arithmetic

fusion used all scores (full databases), whereas HMM

fusion and classifier fusion used trimmed databases (re-

fer to Table 1b). The distributions of normalized scores

of four trimmed databases are presented as scatter plots

in Figs. 2—3, where the x-axis denotes Score 1 and

the y-axis represents other scores. The distributions

of 3 scores shown in Fig. 3 indicate low correlation

of three scores. Figs. 2—3 also show that three NIST

databases contain similarity scores (genuine scores are

large); while the ASUMS database includes both sim-

ilarity scores and distance scores (genuine scores are

small). Notice that less impostor markers shown in Fig.

2c is because most impostor markers are behind (thus

blocked by) the genuine markers.

Four fusion processes were tested across the four

score databases (refer to Table 1a). The fusion results

of mean fusion, LDA (with quadratic kernel), KNN,

and HMM were reported in Table 2a. The HMM mod-

els were implemented and adapted upon the “Hidden

Markov Model (HMM) Toolbox for Matlab” [20]. All

HMM models were tested by varying the number of

Gaussian components (g) from 2 to 7, the best results of

HMM fusions (together with initialization parameters)

are shown in Table 2a. The verification rates of origi-

nal scores are presented in Column “Single Matcher” in
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Fig. 2. Scatter plots (score distributions) of normalized multimodal biometric scores from three NIST databases (trimmed), where the x-axis

is Score 1 and the y-axis is Score 2: (a) NIST-Face-Finger M1 (Face); (b) NIST-Face-Finger M2 (Finger); (c) NIST-Finger-Finger;

(d) NIST-Face. Notice that all genuine scores and the two randomly-selected impostor scores per matcher per user are presented.

Table 2a, where the rightmost number (in italic font) is

the single best performance.

4.2 Results and Discussions

The performance of individual matcher (RV) and

four fusion processes (RF) on four databases are pre-

sented in Table 2a. It is clear that all four fusion ap-

proaches yield improvements compared to the corre-

sponding single best matcher (SBM) on each database.

Overall, the HMM fusion performs the best. It seems

that the mean fusion performs very well on the mul-

timodal databases (99.61% on NIST-Face-Finger and

100% on ASUMS-Face-Face). The possible reason

might be that the genuine scores and the impostor scores

on these two databases are well separated (refer to the

score distributions shown in Figs. 2—3), which makes a

linear separation (like mean fusion) ideal. Surprisingly,

in another independent research [30], the weighted-sum

score fusion reached the highest rate of 99% (SBM=

97%) when two weights were equal, which turned out

to be a mean fusion (but the score distributions were not

presented). The level of improvement will be analyzed

using the values of relative rate increase (RRI).

The RRI values of four fusion processes are given

in Table 2b. Table 2a and Table 2b are corresponding

cell-by-cell except for the last row and the last column.

Let us examine the rationality of RRI, which is pro-

posed to measure the improvement of score fusion. The

RRI value of mean fusion on NIST-Face is 0.1263 (the

smallest value in Table 2b), which corresponds an ab-

solute rate increase (ARI = 2:62%) from 79.26% (RV)

to 81.88%. The RRI value of HMM fusion on NIST-

Face-Finger is 0.9730 (the second largest value in Table

2b), which corresponds ARI = 11:53% (from 88.15% to

99.68%). There is a special case, RRI = 1:0000, for the

mean fusion on ASUMS-Face-Face, which represents a
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Fig. 3. Scatter plots (score distributions) of normalized face scores from two ASUMS datasets (trimmed), where the x-axis shows Score 1

from FPB (distance score), and the y-axis represents Score 2 from LDA (distance score shown in blue) and Score 3 from EBGM (similarity

score shown in red): (a) Scores from ASUMS-Face-Face M1 (IR); (b) Scores from ASUMS-Face-Face M2 (DC). Notice that all genuine

scores and the two randomly-selected impostor scores per matcher per subject are presented.

verification rate increase from 94.10% to 100%. Since

RF = 100% means a perfect fusion (i.e., a perfect hu-

man identification system), it is reasonable for RRI to

take its maximum value, 1.0. On a large database (e.g.,

millions of users), RRI rarely reaches 1.0. According

to the definition of RRI in Eq. (3), improving RF from

90% to 100% (ARI = 10%) and from 99.9% to 100%

(ARI = 0:1%), both will have RRI = 1:0, which makes

sense in terms of difficulty or effort. In other words, the

level of difficulty or the amount of effort for both cases

may be equivalent.

In Table 2b, the means and standard deviations of

RRI, denoted as (¹RRI,¾RRI), in each row and in each

column are listed in the last column and in the last

row, respectively, where “NA” means not applicable. As

shown in the bottom row of Table 2b, when averaging

across four biometric databases, the HMM fusion has

the highest ¹RRI and also the least ¾RRI. We may con-

clude that the HMM fusion is the best for MBSF in terms

of accuracy (high improvement) and credibility (low

variance). The LDA fusion is the second best. Accord-

ing to the rightmost column in Table 2b, when averag-

ing across four fusion processes, the NIST-Face-Finger

database gives the highest ¹RRI (0.9565) with the least

¾RRI. The ASUMS-Face-Face database is the second

best (¹RRI = 0:9064). It is clear that multimodal fusion

(NIST-Face-Finger and ASUMS-Face-Face, their aver-

aged ¹RRI = 0:9314) is superior to single-modal fusion

(NIST-Finger-Finger and NIST-Face, their averaged

¹RRI = 0:6649). It also makes sense that NIST-Face-

Finger produces a better improvement than ASUMS-

Face-Face since NIST-Face-Finger consists of truly di-

verse modalities (face and finger), whereas ASUMS-

Face-Face contains two bands of face images (thermal

and visible).

In Table 2b, ¹RRI(NIST-Face-Finger) = 0:9565 rep-

resents a modality fusion with multimodal scores when

averaging fusions; ¹RRI(HMM Fusion) = 0:9209 is from

the best fusion process when mixing modalities and

recognitions; and ¹RRI(NIST-Face) = 0:6142 is consid-

ered as a recognition fusion result with single-modal

(face) scores when averaging fusions. It reveals that

the importance of fusion factors from the highest to

the lowest are as follows: score modality, fusion pro-

cess, and recognition method. These three factors may

interact with one another; however, we do not have suf-

ficient data (power) to conduct an analysis of variance

(ANOVA).

To investigate and verify key factor that influences

the score fusion (i.e., sensitivity test), we need to sep-

arate three fusion factors: modality, recognition, and

fusion. Thus two multimodal databases, NIST-Face-

Finger and ASUMS-Face-Face, are selected, and di-

vided into modality subsets (e.g., NIST-Face-Finger M1

and NIST-Face-Finger M2; refer to Table 1b) and recog-

nition subsets (e.g., NIST-Face-Finger R1 and NIST-

Face-Finger R2). For example, on NIST-Face-Finger

M1 (face), the mean fusion is performed by averag-

ing the scores from two matchers (i.e., two recognition

methods), which is used to research the impact of the

recognition method. While on ASUMS-Face-Face R2

(EBGM), the mean fusion is achieved by averaging the

two EBGM scores from two modalities (i.e., IR and

DC; see Fig. 1) and used to study the impact of score

modality. The performance of individual matcher (RV)

and four fusion processes (RF) on subsets are listed in

Table 3a and Table 4a, and the relative rate increase

(RRI) of four fusion processes on subsets and their

(¹RRI,¾RRI) are given in Table 3b and Table 4b. The

following discussions are based on the results of RRI
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TABLE 3a

The verification rates (%) of four fusion processes (RF) on four subsets derived from the NIST-Face-Finger database.

Database Single Matcher (RV) Mean Fusion LDA Fusion KNN Fusion HMM Fusion

(m,n,g)

NIST-Face-Finger M1 (Face) 84.33, 89.17 90.52 94.45 96.97 97.42 (2,1,3)

NIST-Face-Finger M2 (Finger) 86.46, 92.65 94.78 97.23 97.48 98.06 (2,1,3)

NIST-Face-Finger R1 (Matcher 1) 84.33, 86.46 94.78 97.16 99.22 99.22 (1,2,2)

NIST-Face-Finger R2 (Matcher 2) 89.17, 92.65 96.71 99.16 99.42 99.42 (1,2,3)

TABLE 3b

The relative rate increase (RRI) of four fusion processes on four subsets derived from the NIST-Face-Finger database.

Database RV Mean Fusion LDA Fusion KNN Fusion HMM Fusion (¹RRI,¾RRI)

NIST-Face-Finger M1 (Finger) 86.75 0.2845 0.5811 0.7713 0.8053 0.6106, 0.2387

NIST-Face-Finger M2 (Face) 89.56 0.5002 0.7348 0.7587 0.8143 0.7020, 0.1386

NIST-Face-Finger R1 (Matcher 1) 85.39 0.6426 0.8055 0.9466 0.9466 0.8353, 0.1447

NIST-Face-Finger R2 (Matcher 2) 90.91 0.6381 0.9076 0.9362 0.9362 0.8545, 0.1449

(¹RRI,¾RRI) (NA) 0.5164, 0.1681 0.7573, 0.1372 0.8532, 0.1020 0.8756, 0.0762 (NA)

or ¹RRI since they can more properly evaluate the im-

provement than RF.

As shown inTable 3b,¹RRI(NIST-Face-Finger R1) =

0:8353 and ¹RRI(NIST-Face-Finger R2) = 0:8545 are

significantly higher than ¹RRI(NIST-Face-Finger M1) =

0:6106 and ¹RRI(NIST-Face-Finger M2) = 0:7020, re-

spectively. Further averaging the RRI values of two

recognition subsets (Rows 3—4), we have ¹RRI(NIST-

Face-Finger Rn) = 0:8449, which is much higher than

¹RRI(NIST-Face-Finger Mn) = 0:6563, where n= 1,2.

The comparisons above indicate that score modality

is a more important factor than recognition method

(matcher) when averaging (or mixing) fusion pro-

cesses. This statement complies with the conclusion

from Table 2b, multimodal fusion is superior to single-

modal fusion. Table 4b shows the same fact, where

¹RRI(ASUMS-Face-Face Rn) = 0:6814 (n= 1,2,3)

and ¹RRI(ASUMS-Face-Face Mn) = 0:6574 (n= 1,2),

although the difference is small as expected (due to less

diversity in score modalities).

To further explore the impacts of fusion factors

within one score database, the (¹RRI,¾RRI) values of

the combined modality subsets (Rows 1—2 in Table

3b and Rows 1—2 in Table 4b) and the (¹RRI,¾RRI)

values of the combined recognition subsets (Rows 3—

4 in Table 3b and Rows 3—5 in Table 4b) are shown

in Table 5. As seen before, the fusion of modalities is

superior to the fusion of recognitions (matchers) with

one exception (the LDA fusion on ASUMS-Face-Face

database). The mean fusion results are not used in the

following discussions due to their high variances (i.e.,

low credibility).

We shall make quantitative comparisons on NIST-

Face-Finger database (Rows 1—2 in Table 5). When the

fusion process is selected (fixed), for instance, with

HMM fusion, the difference of ¹RRI values between

the fusion of modalities and the fusion of recognitions

is 0.1316, denoted as ¢¹RRI(Modality, Recognition j

HMM) = 0:9414¡ 0:8098 = 0:1316. This big difference
shows the fusion of modalities is much better than

the fusion of recognitions. When the modalities are

selected and the matchers (i.e., recognitions) are fixed

(refer to Row 2 in Table 5), no big difference be-

tween different fusion processes is observed, for exam-

ple, ¢¹RRI(HMM, KNN j Recognition) = 0, and ¢¹RRI
(HMM, LDA j Recognition) = 0:0848. These compar-
isons show that the fusion of different modalities is a

dominant factor, which makes the different fusion pro-

cesses have less impact on fusion improvement. When

the matchers are chosen and the modality is fixed (re-

fer to Row 1 in Table 5), we have ¹RRI(HMM, KNN j
Modality) = 0:0448, and ¹RRI(HMM, LDA jModality)
= 0:1518. These results show that the fusion process

plays an important role when fusing multi-matcher

scores from a single modality (i.e., without the dom-

inant factor of modality). Note that in Table 5 the two

identical entries at Row 2, Column 3 and 4 are just

coincident.

Similar quantitative analyses on ASUMS-Face-

Face database (Rows 3—4 in Table 5) are given as fol-

lows. ¢¹RRI(Modality, Recognition jHMM) = 0:7231¡
0:6788 = 0:0443 reveals that the fusion of different

modalities (thermal face and visible face) is slightly

better than the fusion of recognitions but no longer

a dominant factor. ¢¹RRI(HMM, KNN j Recognition) =
0:1135 and ¹RRI(HMM, KNN jModality) = 0:0876 in-
dicate that the different fusion processes become a more

important factor when the modality is not a dominant

factor.

How to apply these findings to guide a MBSF devel-

opment and application is discussed below. Modality is

the key and dominant factor in score fusion, but adding

more matcher scores to the fusion will improve the per-

formance further. In fact, RF(NIST-Face-Finger, HMM

Fusion) = 99:68% (4-score fusion shown in Table 2a) is

higher than RF(NIST-Face-Finger R2, HMM Fusion) =
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TABLE 4a

The verification rates (%) of four fusion processes (RF) on five subsets derived from the ASUMS-Face-Face database.

Database Single Matcher (RV) Mean Fusion LDA Fusion KNN Fusion HMM Fusion

(m,n,g)

ASUMS-Face-Face M1 (IR) 91.67, 93.75, 96.88 96.88 98.97 97.61 98.45 (3,1,2)

ASUMS-Face-Face M2 (DC) 90.63, 93.75, 97.92 98.96 97.94 97.26 97.76 (3,1,2)

ASUMS-Face-Face R1 (LDA) 91.67, 90.63 96.88 96.39 96.90 97.95 (1,2,3)

ASUMS-Face-Face R2 (EBGM) 93.75, 93.75 97.92 98.28 99.49 99.14 (1,2,2)

ASUMS-Face-Face R3 (FPB) 96.88, 97.92 100 98.62 98.28 98.80 (1,2,2)

TABLE 4b

The relative rate increase (RRI) of four fusion processes on five subsets derived from the ASUMS-Face-Face database.

Database RV Mean Fusion LDA Fusion KNN Fusion HMM Fusion (¹RRI,¾RRI)

ASUMS-Face-Face M1 (IR) 94.10 0.4712 0.8254 0.5949 0.7373 0.6572, 0.1562

ASUMS-Face-Face M2 (DC) 94.10 0.8237 0.6508 0.5356 0.6203 0.6576, 0.1210

ASUMS-Face-Face R1 (LDA) 91.15 0.6475 0.5921 0.6497 0.7684 0.6644, 0.0743

ASUMS-Face-Face R2 (EBGM) 93.75 0.6672 0.7248 0.9184 0.8624 0.7932, 0.1169

ASUMS-Face-Face R3 (FPB) 97.40 1.0000 0.4692 0.3385 0.5385 0.5865, 0.2878

(¹RRI,¾RRI) (NA) 0.7219, 0.1994 0.6525, 0.1345 0.6074, 0.2099 0.7054, 0.1272 (NA)

TABLE 5

The (¹RRI,¾RRI) values of the combined modality subsets (Rows 1—2 in Table 3b and in Table 4b, respectively) and the (¹RRI,¾RRI) values of

the combined recognition subsets (the rest rows in Table 3b and in Table 4b, respectively).

Database Mean Fusion LDA Fusion KNN Fusion HMM Fusion Fusion of What

NIST-Face-Finger M1-M2 0.3924, 0.1525 0.6580, 0.1087 0.7650, 0.0089 0.8098, 0.0064 Recognitions/Matchers

NIST-Face-Finger R1-R2 0.6403, 0.0032 0.8566, 0.0722 0.9414, 0.0074 0.9414, 0.0074 Modalities

ASUMS-Face-Face M1-M2 0.6475, 0.2493 0.7381, 0.1234 0.5653, 0.0419 0.6788, 0.0827 Recognitions/Matchers

ASUMS-Face-Face R1-R3 0.7716, 0.1981 0.5954, 0.1278 0.6355, 0.2902 0.7231, 0.1667 Modalities

99:42% (2-score fusion shown in Table 3a). The fu-

sion process becomes very important when the score

modalities are fixed, for instance, the fusion of mul-

tiple matchers of single modality. For example, imag-

ine a human identification system of two modalities

(face and finger) and of two matchers per modality

that has RF = 99:68% using HMM fusion, how can you

further improve the system performance? According to

the findings of this research, the recommended solu-

tion is first to add one more modality (e.g., voice or

iris), then to develop a better fusion process than HMM,

and/or to add more recognition methods (like Local

Gabor Binary Patterns (LGBP) [30] for face recogni-

tion). Of course, using a high-performance matcher is

always preferred. The implication hereby is that devel-

oping a better fusion process (e.g., better than HMM)

will have a higher impact on fusion improvement (i.e.,

a larger RRI) than adding a third matcher into each

modality.

A recent face recognition research [34] explored

the performance improvement with the stereo fusion at

three levels: image, feature, and score. The primary fu-

sions investigated in that paper are stereo fusion with

the stereo images captured from two identical cameras.

Experimental results show that any level stereo fusion

can improve the recognition performance. It seems that

stereo image fusion and stereo feature fusion is better

than stereo score fusion. However, the processes for the

fusions at image level and feature level are more com-

plicated (such as image registration). On the other hand,

score fusion can be implemented without the knowledge

of what images and what features, and can be performed

flexibly by using variant score combinations from dif-

ferent cameras, modalities, and/or matchers. In addition,

score fusion is faster than image fusion or feature fu-

sion.

In the future we will sufficiently investigate and ver-

ify the current findings by developing more recognition

methods and more fusion processes and by using more

biometric modalities (like voice, iris, and palm geome-

try). A statistical analysis (e.g., ANOVA, ROCs [1]) will

be conducted to study the interactions and significance

of those fusion factors. We will also research the im-

pacts of normalization procedures, decision rules, and

image fusion techniques [17] on the MBSF process.

5 CONCLUSIONS

A set of experiments regarding multimodal biomet-

ric score fusion (MBSF) has been conducted in this re-

search. A hidden Markov model (HMM) is tested for

multimodal biometrics score fusion, which is the most

accurate, reliable, and credible fusion process compared
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to other three methods (mean, LDA, KNN). To eval-

uate and compare the improvement of variant fusion

processes, a new metric, called relative rate increase

(RRI), is proposed upon the concept of verification rate.

The RRI metric has proved to be reasonably accurate

in measuring the performance improvement resulting

from MBSF. Based on the experimental results from

four multimodal biometric databases, the findings can

be summarized as follows. The score modality is the

most important (key) factor in biometric score fusion

which dominates the fusion result. When the number

of score modalities is fixed, the fusion process becomes

the next important factor to score fusion. Adding more

recognition matchers has the least impact on fusion im-

provement. Another finding is that, different bands of

face images (thermal and visible) are less diverse modal-

ities than face and finger, which makes the score modal-

ity (of thermal faces and visible faces) no longer a dom-

inant factor.
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